Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Ultrathin and two-dimensional (2D) metals can support strong plasmons, with concomitant tight field confinement and large field enhancement. Accordingly, 2D-metal nanostructures exhibiting plasmonic resonances are highly sensitive to the environment and intrinsically suitable for optical sensing. Here, based on a proof-of-concept numerical study, nano-engineered ultrathin 2D-metal films that support infrared plasmons are demonstrated to enable highly responsive refractive index (RI) sensing. For 3 nm-Au nanoribbons exhibiting plasmonic resonances at wavelengths around 1600 nm, a RI sensitivity of SRI > 650 nm per refractive index unit (RIU) is observed for a 100 nm-thick analyte layer. A parametric study of the 2D-Au system indicates the strong dependence of the RI sensitivity on the 2D-metal thickness. Furthermore, for an analyte layer as thin as 1 nm, a RI sensitivity up to 110 (90 nm/RIU) is observed in atomically thin 2D-In (2D-Ga) nanoribbons exhibiting highly localized plasmonic resonances at mid-infrared wavelengths. Our results not only reveal the extraordinary sensing characteristics of 2D-metal systems but also provide insight into the development of 2D-metal-based plasmonic devices for enhanced IR detection.more » « less
- 
            The resonant nature and geometric scalability make metamaterials an ideal platform for an enhanced light–matter interaction over a broad frequency range. The mid-infrared (IR) spectral range is of great importance for vibrational spectroscopy of molecules, while IR metamaterials created from lithography-based planar nanostructures have been used to demonstrate enhanced molecular detection. Compared with visible and near-infrared, the relative long wavelengths of IR light make it possible to achieve three-dimensional (3D) IR metamaterials via the state-of-the-art 3D fabrication techniques. Here, we design and fabricate a 3D printed plasmonic metamaterial absorber (MMA), and by performing Fourier-transform IR spectroscopy, we demonstrate that a series of molecular fingerprint vibrations of glycine can be significantly enhanced by the high absorption mode supported by the 3D meta-atoms of the MMA. The observed enhanced IR detection can also be partially attributed to the improved accessibility offered by the 3D architecture of the MMA. In particular, due to capillary forces during the drying process, the microscale 3D printed features lead to selective analyte deposition in high-field regions, which provides another degree of freedom in the design of the 3D printed structures for surface-enhanced IR detection. Our study shows the flexibility of metastructures based on advanced 3D printing technology in tailoring the interaction between IR light and materials on a subwavelength scale.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
